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Abstract: The double diffusion convection Casson fluid flow along a vertical plate incorporating Soret effect and
viscous heating with thermal and solutal dispersion was studied. A well-known system of non-similar partial
differential equations was solved using the bivariate local linearization method (BLLM). The solution procedure
uses an approximation by a bivariate Lagrange interpolation polynomial. Older methods considered collocations
along the non-dimensional boundary layer axis η only. In this paper collocations in both the (η, ζ) directions are
considered. The numerical method is compared to the results obtained by the quasi-linearization method (QLM)
and those previously published in the literature for the case (ζ = 0). This work also analyse the efficiency and
robustness of the numerical method used as compared to traditional methods such as finite differences widely used
in the literature. The increase in thermal stratification parameter decrease heat transfer coefficient and increase
mass transfer coefficient. The increase in the non-Newtonian parameter result in the increase velocity profiles, skin
friction coefficient and reduce both temperature and concentration profiles. Increasing the Biot number decrease
temperature trends.
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1 Introduction
The study of the double dispersion in convection and
fluid flow in a double stratified medium has become
popular due to its environmental and engineering ap-
plications. Applications include dispersion of chem-
ical wastes in ground water flow and other forms of
pollution, liquification and grain storage. Other appli-
cations arise in products in pharmacy, the reaction of
coal and water, flow of paints and lubricants [1] - [2].
Fluid flow involving mechanical dispersion in Casson
fluid, the movement of iron fillings in engine oil, the
solute transfer in human blood and the distribution of
solutal objects in soups has received little attention.

Dispersion in fluid flow is the mechanical move-
ment of solute due to a concentration gradient in the
flow regime. The study of the concept of dispersion
was done by among others Narayana and Murthy [3]
who studied the transfer of heat and mass in a double
stratified medium with non-Darcy porous conditions.
Kairi and Murthy [4] investigated natural convection
in a non-Darcy porous thermally stratified medium.
These studies advanced the understanding of disper-
sion and thermal stratification. The effect of the dou-
ble dispersion in micropolar fluid has been studied by
Srinivasacharya and RamReddy [5]. Murthy et al. [6]
investigated the effect of fluid flow in nanofluid satu-

rated non-Darcy porous medium with thermal stratifi-
cation. Kameswaran and Sibanda [7] studied the fluid
flow in heat, mass transfer and convection in a porous
media of Ostwald de Waele nanofluid flow with ther-
mal dispersion.

Studies on vertical plate geometry include the
work of Chen [8] which focused on vertical surface,
MHD and Ohmic heating. Narayana et al.[9] worked
on vertical wavy surface, Soret and Dufour effects.
Javaherdehdeh [10] investigated fluid flow on a ver-
tical surface, heat and mass transfer in porous media.
Raju et al. [11] worked on viscous dissipation and
magnetic effects on the flow of fluid along a vertical
plate.

The study of shear thinning Casson fluid flow
has attracted attention due to its industrial applica-
tion and biological fluids such as blood and synovial
fluid. Casson fluid is a non- Newtonian fluid that show
unique shear-stress-strain relationships and these are
different from Newtonian fluids. The non-linear con-
stitutive equation for Casson fluid was derived by
Casson [12] in 1959. It describes a wide range of
shear rates for properties of many polymers (Vino-
gradov and Malkin [13]). The Casson fluid model
describes blood flowing through small vessels with
low shear rate (McDonald [14]; Shaw et al. [15]).
Studies in non-Newtonian fluids such as Casson fluid
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flow include among others the work of Mukhopad-
dhyay et. al [16] who worked on the flow of Cas-
son fluid along a stretching surface, Mukhopadhyay
and Vajravelu [17] studied Casson fluid flow along
a porous stretching surface with diffusion and chem-
ical reaction species. Nadeem et. al [18] investi-
gated magneto-hydrodynamic three-dimensional Cas-
son fluid flow on a linearly stretching surface. All of
these studies improved the understanding of Casson
fluid behaviour.

In all the studies mentioned above, viscous heat-
ing was not considered. Viscous heating effects on
Newtonian fluid flow were considered by among oth-
ers Jordan [19] who studied the effects of viscous
heating on unsteady natural convection over vertical
porous plate. The influence of viscous heating on
a grey emitting/absorbing fluid flow along a moving
vertical plate has been studied by Suneetha et al. [20].
Kameswaran et al. [21] studied the effect of viscous
heating on magneto-hydrodynamic nanofluid flow due
to a shrinking/stretching sheet. These studies empha-
sized the importance of considering heat generated by
fluid flow. In this paper, viscous dissipation in Casson
fluid flow is considered.

Motivated by all of the above studies, the aim of
this work is to study double dispersion in Casson fluid
flow along vertical plate with consideration of Soret
and viscous heating effects. The governing equations
were solved numerically using the bivariate local lin-
earization method which is in [23]. The general sys-
tematic way of presenting the local linearization and
quasi-linearization methods is shown for brevity. This
gives the general approach that can be used in solving
partial differential equations. The influence of the dif-
ferent parameters on concentration, temperature and
velocity profiles is discussed through graphical illus-
trations. The effect of Casson parameter, solutal con-
vection parameter, double diffusion parameter, strat-
ification parameter and the Biot number are consid-
ered in this study. The effect of radiation, Prandtl and
Schmidt numbers on the fluid properties is not dis-
cussed as they are well known.

2 Mathematical formulation
In this paper we consider a steady, two dimensional
Casson fluid flow adjacent to a vertical surface. The x-
coordinate is along the vertical plate and y is normal to
the surface of the plate, u and v are the velocity com-
ponents in the directions of x and y respectively. The
vertical plate surface is maintained at constant tem-
perature Tw and concentration on the vertical plate is
Cw. A model of an incompressible as well as isotropic
flow of Casson fluid is written as

tij =

(
μ

1
n
e + (ty/

√
2π)

1
n

)n

eij , |tij | > ty

if |tij | < ty then π = 0, there is no flow. (1)

where ty is the yield stress of the Casson fluid,
π = eijeij , eij is the (i, j)-th component of the rate
of deformation, μe is plastic dynamic viscosity of the
Casson fluid, For n = 2 represents the simple model

for Casson fluid. In this paper we use the value n = 1
as used in [2],[16],[17] and [18].

Considering the effect of the thermal and solutal
dispersion, the double dispersion convection equation
of the Casson fluid is written as

∂u

∂x
+

∂v

∂y
= 0, (2)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

δ

)
∂2u

∂y2
± gβT (T − T∞)

+gβc(C − C∞), (3)

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
αy

∂T

∂y

)
− 1

ρCp

∂qr
∂y

+
ν

Cp

(
1 +

1

δ

)(
∂u

∂y

)2

, (4)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y

(
Dy

∂C

∂y

)
+

DT

Tm

∂2T

∂y2
, (5)

and the boundary conditions are written as

u = v = 0, kf
∂T

∂y
= h0(T0 − T ),

C = Cw, at y = 0,

u → U, T → T∞, C → C∞, as y → ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)

where ν is the viscosity of the fluid, g is the
gravitational acceleration, δ = μ

√
2πc/τy is the Cas-

son parameter, βT and βC are the thermal and solu-
tal coefficients of expansions respectively, T is the
solute temperature, T∞ is uniform ambient temper-
ature, C is the solute concentration, C∞ is uniform
ambient concentration, αy = α + γd(∂ψ/∂y) and
Dy = Dsm + ξd(∂ψ/∂y) represent the thermal dis-
persion and solutal diffusivity, respectively where α
is the molecular thermal diffusivity, γ is the mechan-
ical thermal-dispersion coefficient, Dsm is the solutal
diffusivity and ξ is the mechanical solutal-dispersion
coefficient, DT is the thermal diffusivity,qr is the ra-
diative heat flux, Cp is the specific heat capacity, Tm

is the mean fluid temperature. The convective bound-
ary conditions at the surface are considered, the sur-
face is heated by fluid of temperature T0 and provide
a heat transfer coefficient h0 and thermal conductivity
k0 where T0 > Tw > T∞. The approximation for the
Roseland radiation is;

qr = − 4σ

3k∗
∂T 4

∂y
(7)

where k∗ and σ are the absorption and Stefan-
Boltzmann numbers, the temperature gradient within
the fluid flow is given by T 4 and the Taylor series ex-
pansion about T∞ and discarding higher powers we
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have T 4 − 4T 3∞ − 3T 4∞ and therefore (4) can be pre-
sented as

u
∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
αy

∂T

∂y

)
− 16σT 2∞

3νCpk∗
∂2T

∂y2

+
ν

Cp

(
1 +

1

δ

)(
∂u

∂y

)2

(8)

Using the following transformations

ζ =
x

l
, η =

√
U

νx
y, θ =

T − T∞
Tf − T∞

,

ψ =
√
νUxf(ζ, η), φ =

C − C∞
Cw − C∞

.

⎫⎪⎪⎬
⎪⎪⎭ (9)

then the governing system of equations are ob-
tained as follows

(
1 +

1

δ

)
f ′′′ +

1

2
ff ′′ ± λζ(θ +Nφ)

= ζ

(
f ′∂f ′

∂ζ
− f ′′∂f

∂ζ

)
, (10)

1

Pr

(
1 +

4

3
R

)
θ′′ +

1

2
fθ′ +

(
1 +

1

δ

)
Ecf ′′2

+ε1
(
f ′′θ′ + f ′θ′′

)
= ζ

(
f ′ ∂θ
∂ζ

− θ′
∂f

∂ζ

)
, (11)

1

Sc
φ′′ +

1

2
fφ′ + Srθ′′ + ε2

(
f ′′φ′ + f ′φ′′)

= ζ

(
f ′∂φ

∂ζ
− φ′∂f

∂ζ

)
, (12)

and the boundary conditions are written as

f ′(ζ, 0) = f(ζ, 0) + 2ζ
∂f

∂ζ
(ζ, 0) = 0,

θ′ = −Bi (1− θ(ζ, 0)) , φ(ζ, 0) = 1,

f ′(ζ,∞) → 1, θ(ζ,∞) → 0,

φ(ζ,∞) → 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(13)

where f ′ denotes the derivative with respect to η.
Thermal Grashof number (Gr), Reynolds number
(Re), Solute Grashof number (Gr∗), thermal convec-
tion parameter (λ), solutal convection parameter (λ∗),
double diffusion parameter (N ), thermal stratification
parameter (ε1), solutal stratification parameter (ε2),
radiation parameter (R), Eckert number (Ec), Soret
number (Sr), Biot number (Bi) and Schmidt number
(Sc), defined as

Gr =
gβTΔTL3

ν2
, Re =

UL

ν
,

ε2 = ξ
dU

ν
, λ =

Gr

Re2
, λ∗ =

Gr∗

Re2

Bi =
a

kf

√
ν

U
, N =

λ∗

λ
,

ε1 = γ
dU

ν
, Gr∗ =

gβcΔCL

U2
,

R =
16T 2∞σ

3νk∗
, Ec =

νU2

CpΔT
,

Sc =
ν

D
, Sr =

DKTΔT

νTmΔC
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

The important non-dimensional parameters are
CF (skin friction), NuX (local Nusselt number) and
ShX (local Sherwood number) are written as

Ra
1/2
X CF =

(
1 +

1

δ

)
f ′′(0),

Ra
−1/2
X NuX = −[1 + ε1f

′(0)]θ′(0),

Ra
−1/2
X ShX = −[1 + ε2f

′(0)]φ′(0),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(15)

3 Method of solution
In this section the bivariate local linearization method
(BLLM)is implemented, which is found in ([23]). The
quasi-linearization method (QLM) is used and was
first used by Bellman and Kalaba [24] to equations
(10)-(12). Assuming that the differences (fr+1 −
fr),(θr+1 − θr) and all its derivatives are small. In
this section a systematic way of implementing the
quasi-linearization and the local linearization methods
is shown.

3.1 Quasi-linearization Method (QLM)
Partial differential equations can be solved using the
quasi-linearization method which can be represented
systematically by considering the following represen-
tation; Given the general partial differential equation
of the form

Γ1 [h1, h2, . . . , hn] = 0,

Γ2 [h1, h2, . . . , hn] = 0,

...

Γn [h1, h2, . . . , hn] = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(16)

where

hi =

[
f1,

∂f1
∂η

,
∂2f1
∂η2

, . . . ,
∂pf1
∂ηp

,
∂f1
∂ζ

,
∂f ′

1

∂ζ

]
for i = 1, 2, . . . , n (17)
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The linearized system is given by

p∑
s=0

α
(1)
1,s,rf

(s)
1,r+1 +

p∑
s=0

α
(1)
2,s,rf

(s)
2,r+1

+ · · ·+
p∑

s=0

α(1)
n,s,rf

(s)
n,r+1

+

p∑
v=0

[
β(1)
v,r

∂fv,r+1

∂ζ
+ γ(1)v,r

∂f ′
v,r+1

∂ζ

]
= R1 (18)

p∑
s=0

α
(2)
1,s,rf

(s)
1,r+1 +

p∑
s=0

α
(2)
2,s,rf

(s)
2,r+1

+ · · ·+
p∑

s=0

α(2)
n,s,rf

(s)
n,r+1

+

p∑
v=0

[
β(2)
v,r

∂fv,r+1

∂ζ
+ γ(2)v,r

∂f ′
v,r+1

∂ζ

]
= R2 (19)

...
p∑

s=0

α
(n)
1,s,rf

(s)
1,r+1 +

p∑
s=0

α
(n)
2,s,rf

(s)
2,r+1

+ · · ·+
p∑

s=0

α(n)
n,s,rf

(s)
n,r+1

+

p∑
v=0

[
β(n)
v,r

∂fv,r+1

∂ζ
+ γ(n)v,r

∂f ′
v,r+1

∂ζ

]
= Rn (20)

where

R1 =

p∑
s=0

α
(1)
1,s,rf

(s)
1,r +

p∑
s=0

α
(1)
2,s,rf

(s)
2,r

+ · · ·+
p∑

s=0

α(1)
n,s,rf

(s)
n,r

+

p∑
v=0

[
β(1)
v,r

∂fv,r
∂ζ

+ γ(1)v,r

∂f ′
v,r

∂ζ

]
− Γ1 (21)

R2 =

p∑
s=0

α
(2)
1,s,rf

(s)
1,r +

p∑
s=0

α
(2)
2,s,rf

(s)
2,r

+ · · ·+
p∑

s=0

α(2)
n,s,rf

(s)
n,r

+

p∑
v=0

[
β(2)
v,r

∂fv,r
∂ζ

+ γ(2)v,r

∂f ′
v,r

∂ζ

]
− Γ2 (22)

...

Rn =

p∑
s=0

α
(n)
1,s,rf

(s)
1,r +

p∑
s=0

α
(n)
2,s,rf

(s)
2,r

+ · · ·+
p∑

s=0

α(n)
n,s,rf

(s)
n,r

+

p∑
v=0

[
β(n)
v,r

∂fv,r
∂ζ

+ γ(n)v,r

∂f ′
v,r

∂ζ

]
− Γn (23)

Applying the systematic quasi-linearization
method to (10)-(12) we rearrange as follows

Γ1 =

(
1 +

1

δ

)
f ′′′ +

1

2
ff ′′ ± λζ(θ +Nφ)

−ζ

(
f ′∂f ′

∂ξ
− f ′′∂f

∂ζ

)
, (24)

Γ2 =
1

Pr

(
1 +

4

3
R

)
θ′′ +

1

2
fθ′ +

(
1 +

1

δ

)
Ecf ′′2

+ε1
(
f ′′θ′ + f ′θ′′

)− ζ

(
f ′ ∂θ
∂ζ

− θ′
∂f

∂ζ

)
, (25)

Γ3 =
1

Sc
φ′′ +

1

2
fφ′ + Srθ′′ + ε2

(
f ′′φ′ + f ′φ′′)

−ζ

(
f ′∂φ

∂ζ
− φ′∂f

∂ζ

)
, (26)

By assigning f1 = f, f2 = θ, f3 = φ, we have
the following linearized system

α
(1)
1,0,rf1,r+1 + α

(1)
1,1,rf

′
1,r+1 + α

(1)
1,2,rf

′′
1,r+1

+α
(1)
1,3,rf

′′′
1,r+1 + α

(1)
2,0,rf2,r+1 + α

(1)
3,0,rf3,r+1

+β
(1)
0,r

∂f1,r+1

∂ζ
+ γ

(1)
1,r

∂f ′
1,r+1

∂ζ
= R1, (27)

α
(2)
2,0,rf2,r+1 + α

(2)
2,1,rf

′
2,r+1 + α

(2)
2,2,rf

′′
2,r+1

+β
(2)
0,r

∂f2,r+1

∂ζ
= R2, (28)

α
(3)
3,0,rf3,r+1 + α

(3)
3,1,r(ζ, η)f

′
3,r+1 + α

(3)
3,2,rf

′′
3,r+1

+β
(3)
0,r

∂f3,r+1

∂ζ
= R3. (29)

where
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α
(1)
1,0,r =

1

2
f ′′
r , α

(1)
1,1,r = −ζ

∂f ′
r

∂ζ
,

α
(1)
1,2,r =

1

2
fr + ζ

∂fr
∂ζ

, α
(1)
1,3,r =

(
1 +

1

δ

)
,

α
(1)
2,0,r = λζ, α

(1)
3,0,r = λζN,

β
(1)
0,r = ζf ′′

r , γ
(1)
1,r = −ζf ′

r,

R1 = α
(1)
1,0,rf1,r + α

(1)
1,1,rf

′
1,r + α

(1)
1,2,rf

′′
1,r

+α
(1)
1,3,rf

′′′
1,r + α

(1)
2,0,rf2,r + α

(1)
3,0,rf3,r

+β
(1)
0,r

∂f1,r
∂ζ

+ γ
(1)
1,r

∂f ′
1,r

∂ζ
− Γ1,

α
(2)
2,0,r = 0, α

(2)
2,1,r =

1

2
fr + ζ

∂fr
∂ζ

+ ε1f
′′
r ,

α
(2)
2,2,r =

1

Pr

(
1 +

4

3
R

)
+ ε1f

′
r, β

(2)
0,r = −ζf ′

r,

R2 = α
(2)
2,0,rf2,r + α

(2)
2,1,rf

′
2,r + α

(2)
2,2,rf

′′
2,r

+β
(2)
0,r

∂f2,r
∂ξ

− Γ2,

α
(3)
3,0,r = 0, α

(3)
3,1,r =

1

2
fr + ζ

∂fr
∂ζ

+ ε2f
′′
r ,

α
(3)
3,2,r =

1

Sc
+ ε2f

′
r, β

(3)
0,r = −ζf ′

r

R3 = α
(3)
3,0,rf3,r + α

(3)
3,1,rf

′
3,r + α

(3)
3,2,rf

′′
3,r

+β
(3)
0,r

∂f3,r
∂ζ

− Γ3,

where all the α
(m)
i,s,r, β

(m)
i,s , γ

(m)
i,s are functions of ζ and

η. The solution for the linearized partial differential
equations (27)-(29) is obtained by approximating the
exact solutions of f(η, ζ), θ(η, ζ) and φ(η, ζ) by the
Lagrange form of polynomial F (η, ζ), Θ(η, ζ) and
Φ(η, ζ) at the selected collocation points; 0 = ζ0 <
ζ1 < ζ2 < · · · < ζNζ

= 1. The approximation for

f(η, ζ) and θ(η, ζ) has the form

f(η, ζ) ≈
Nζ∑
j=0

F (η, ζ)Lj(ζ)

=

Nζ∑
j=0

Fj(η)Lj(ζ), (30)

θ(η, ζ) ≈
Nζ∑
j=0

Θ(η, ζ)Lj(ζ)

=

Nζ∑
j=0

Θj(η)Lj(ζ), (31)

φ(η, ζ) ≈
Nζ∑
j=0

Φ(η, ζ)Lj(ξ)

=

Nζ∑
j=0

Φj(η)Lj(ζ). (32)

where Fj(η) = F (η, ζ), Θj(η) = Θ(η, ζ) and
Φj(η) = Φ(η, ζ), Lj is the characteristic Lagrange
cardinal polynomial defined as

Lj(ζ) =

M∏
k=0,k �=j

ζ − ζk
ζj − ζk

, (33)

that obey the Kronecker delta equation

Lj(ζk) = Δjk =

{
0 if j �= k

1 if j = k
(34)

The equations for the solution of Fj(η), Θj(η)
and Φj(η) are obtained by substituting (30)-(32) into
(27)-(29) and letting the equations be satisfied at
the points ζi, i = 0, 1, 2, . . . , Nζ . The derivatives
of the Lagrange polynomial can be computed an-
alytically with the transformation ζ ∈ [0, Lζ ] to
ω ∈ [−1, 1] then we consider the Chebyshev-Gauss-

Lobatto points ωi = cos iπ
Nζ

. After using linear trans-

formation ζ = Lζ(ω+1)/2, the derivatives of f ′ with
respect to the collocation points ωj is computed as

∂f ′

∂ζ

∣∣∣∣
ζ=ζi

= 2

Nζ∑
j=0

F ′
j(η)

dLj

dζ
(ζi) =

Nζ∑
j=0

di,jF
′
j(η),

i = 0, 1, 2, . . . , Nζ , (35)

where di,j =
dLj

dω (ωi)(i = 0, 1, . . . , Nζ) are en-
tries of the standard Chebyshev differentiation matrix,

WSEAS TRANSACTIONS on FLUID MECHANICS Gilbert Makanda, Sachin Shaw

E-ISSN: 2224-347X 135 Volume 14, 2019



d = 2
Lζ

d. We now apply the collocation (η, ζi) in

(27)-(29) we obtain

A(i)
1,1F(i)

1,i + A(i)
1,2F(i)

2,i + A(i)
1,3F(i)

3,i + β
(i)
1,r

Nζ∑
j=0

di,jFi,j

+γ
(i)
1,r

Nζ∑
j=0

di,jD Fi,j = R1,j , (36)

A(i)
2,1F(i)

2,i + β
(i)
2,r

Nζ∑
j=0

di,jF2,i = R2,j , (37)

A(i)
3,1F(i)

3,i + β
(i)
3,r

Nζ∑
j=0

di,jF3,i = R3,j , (38)

where

A(i)
1,1 =

3∑
s=0

α1,s,rD(s),A(i)
1,2 =

3∑
s=0

α2,s,rD(s),

A(i)
1,3 =

3∑
s=0

α3,s,rD(s)A(i)
2,1 =

3∑
s=0

α
(2)
2,s,rD(s),

A(i)
3,1 =

3∑
s=0

α
(3)
3,s,rD(s).

3.2 Bivariate Local Linearization Method
The systematic way of implementing the local lin-
earization method is given as

p∑
v=0

[
β(1)
v,r

∂fv,r+1

∂ζ
+ γ(1)v,r

∂f ′
v,r+1

∂ζ

]

+

p∑
s=0

α
(1)
1,s,rf

(s)
1,r+1 = R1, (39)

p∑
v=0

[
β(2)
v,r

∂fv,r+1

∂ζ
+ γ(2)v,r

∂f ′
v,r+1

∂ζ

]

+

p∑
s=0

α
(2)
2,s,rf

(s)
2,r+1 = R2, (40)

...
p∑

v=0

[
β(n)
v,r

∂fv,r+1

∂ζ
+ γ(n)v,r

∂f ′
v,r+1

∂ζ

]

+

p∑
s=0

α(n)
n,s,rf

(s)
n,r+1 = Rn, (41)

where

R1 =

p∑
v=0

[
β(1)
v,r

∂fv,r
∂ζ

+ γ(1)v,r

∂f ′
v,r

∂ζ

]

+

p∑
s=0

α
(1)
1,s,rf

(s)
1,r − Γ1, (42)

R2 =

p∑
v=0

[
β(2)
v,r

∂fv,r
∂ζ

+ γ(2)v,r

∂f ′
v,r

∂ζ

]

+

p∑
s=0

α
(2)
2,s,rf

(s)
1,r − Γ2, (43)

...

Rn =

p∑
v=0

[
β(n)
v,r

∂fv,r
∂ζ

+ γ(n)v,r

∂f ′
v,r

∂ζ

]

+

p∑
s=0

α(n)
n,s,rf

(s)
1,r − Γn. (44)

Applying the local linearization method to (24)-
(26) we obtain the following

α
(1)
1,0,rf1,r+1 + α

(1)
1,1,rf

′
1,r+1 + α

(1)
1,2,rf

′′
1,r+1 + α

(1)
1,3,rf

′′′
1,r+1

+β
(1)
0,r

∂f1,r+1

∂ζ
+ γ

(1)
1,r

∂f ′
1,r+1

∂ζ
= R1, (45)

α
(2)
2,0,rf2,r+1 + α

(2)
2,1,rf

′
2,r+1 + α

(2)
2,2,rf

′′
2,r+1

+β
(2)
0,r

∂f2,r+1

∂ζ
= R2, (46)

α
(3)
3,0,rf3,r+1 + α

(3)
3,1,rf

′
3,r+1 + α

(3)
3,2,rf

′′
3,r+1

+β
(3)
0,r

∂f3,r+1

∂ζ
= R3. (47)

where

α
(1)
1,0,r =

1

2
f ′′
r , α

(1)
1,1,r = −ζ

∂f ′
r

∂ζ
,

α
(1)
1,2,r =

1

2
fr + ζ

∂fr
∂ζ

, α
(1)
1,3,r =

(
1 +

1

δ

)
,

β
(1)
0,r = ζf ′′

r , γ
(1)
1,r = −ζf ′

r,

R1 = α
(1)
1,0,rf1,r + α

(1)
1,1,rf

′
1,r + α

(1)
1,2,rf

′′
1,r + α

(1)
1,3,rf

′′′
1,r

+β
(1)
0,r

∂f1,r
∂ζ

+ γ
(1)
1,r

∂f ′
1,r

∂ζ
− Γ1,
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α
(2)
2,0,r = 0, α

(2)
2,1,r =

1

2
fr + ζ

∂fr
∂ζ

+ ε1f
′′
r ,

α
(2)
2,2,r =

1

Pr

(
1 +

4

3
R

)
+ ε1f

′
r, β

(2)
0,r = −ζf ′

r,

R2 = α
(2)
2,0,rf2,r + α

(2)
2,1,rf

′
2,r + α

(2)
2,2,rf

′′
2,r

+β
(2)
0,r

∂f2,r
∂ζ

− Γ2,

α
(3)
3,0,r = 0, α

(3)
3,1,r =

1

2
fr + ζ

∂fr
∂ζ

+ ε2f
′′
r ,

α
(3)
3,2,r =

1

Sc
+ ε2f

′
r, β

(3)
0,r = −ζf ′

r

R3 = α
(3)
3,0,rf3,r + α

(3)
3,1,rf

′
3,r + α

(3)
3,2,rf

′′
3,r

+β
(3)
0,r

∂f3,r
∂ζ

− Γ3.

where all the α
(m)
i,s,r, β

(m)
i,s , γ

(m)
i,s are functions of ζ

and η. The full description of the application of the
Chebyshev spectral collocation technique is fully de-
scribed in [23].

4 Results and discussions
The problem of the effect of convective boundary con-
ditions, viscous heating and double dispersion in Cas-
son fluid flow was solved by the local linearization
(BLLM). The system of equations was validated by
the quasi-linearization method for the case ζ = 0
which gives a well-known Blasius equation and com-
pared to the results of Yih [25]. These comparisons of
results were in excellent agreement. In this section we
focus on the variation of the Casson parameter δ, ther-
mal convection parameter λ, double diffusion param-
eter N , radiation parameter R, thermal stratification
parameter ε1, Eckert number Ec, stratification param-
eter ε2, Soret number Sr and the Biot number Bi con-
centration, temperature and velocity profiles. We also
study variation of some selected physical parameters
with the skin friction, mass and heat transfer coeffi-
cients.

In this section we assume that the Prandtl num-
ber is between Pr = 10 at 20oC and Pr = 20 for
blood. All other parameters are chosen arbitrarily be-
ing careful to stay within the range of the Casson fluid
non- Newtonian parameters.

We discuss the accuracy of the BLLM by con-
sidering the residual error after r iterations over i =
0, 1, . . . , Nt. The method converges with the compu-
tational order of convergence rate (COC=1).

0 5 10 15 20 25 30 35 40

10−15

10−10

10−5

100

Iterations

E
f
,
E

θ
,
E

φ

Ef
Eθ
Eφ

Figure 1: Error for f(η), θ(η), φ(η)

Figure 1 shows the error approximated at a given
iteration level as Ef = ||fr+1− fr||∞, Eθ = ||θr+1−
θr||∞, Eφ = ||φr+1 − φr||∞. The method converges
after five iterations and becomes stable until 40 itera-
tions showing the accuracy of the BLLM. The resid-
ual error is O(10−13) for θ(η) and φ(η) and 10−10 for
f(η). The errors incurred are as a result of interpo-
lation and ill conditioned matrices. The variation of
certain parameters results in changing the condition
number of large matrices.

The numerical results were validated for the skin
friction f ′′(0) and heat transfer −θ′(0) coefficients
for the Newtonian fluid. The results obtained by the
BLLM and the quasi-linearization method were com-
pared to the results obtained by Yih [25] and were in
excellent agreement as shown in Table 1 and Table 2.

Table 1: Comparison of the values of f ′′(0) and

−θ′(0) of Yih et al. [25] with QLM when ζ = R =
Ec = 1/δ = ε1 = ε2 = 0.

ref [25] QLM

Pr f ′′(0) − θ′(0) f ′′(0) − θ′(0)
1 0.332057 0.332057 0.33205935 0.33205935

10 - - 0.3305935 0.72814593

Table 2: Comparison of the values of f ′′(0), −θ′(0)
of Yih et al. [25]and QLM (see Table 1) with BLLM

when ζ = R = Ec = 1/δ = ε1 = ε2 = 0.
ref [25] BLLM

Pr f ′′(0) − θ′(0) f ′′(0) − θ′(0)
1 0.332057 0.332057 0.33205935 0.33205935

10 - - 0.3305935 0.72814593

In this section a set of graphical results for
the temperature,velocity and concentration profiles as
well as the local heat and mass transfer coefficients
are presented and discussed. Detailed solutions have
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been obtained and are presented in figures 2-12. The
numerical problem consist of two variables (ζ, η) and
three dependent fluid dynamics variables (f, θ, φ). In
the computations in this paper default parameters are
prescribed as δ = 1, λ = 0.05, N = 0.5, P r =
10, R = 0.5, Ec = 0.1, ε1 = 0.1, ε2 = 0.1, Sc =
0.7, Sr = 0.1, Bi = 0.
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Figure 2: Effects of varying Casson parameter δ on

velocity profiles

Figure 2 is plotted to examine the effects of vary-
ing the Casson parameter on velocity profiles f ′(η)
when δ = 1, 3, 5. Increasing the non-Newtonian Cas-
son parameter result in the increase in the velocity
profiles in both aiding (λ = 0.05) and opposing flows
(λ = −0.05). Larger values of the non-Newtonian pa-

rameter implies that fluid becomes Newtonian (1δ →
0), thereby increasing the boundary layer fluid veloc-
ity.
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Figure 3: Effects of varying double diffusion parame-

ter N on velocity profiles

Figure3 is plotted to examine the effects of vary-
ing the double diffusion parameter on velocity profiles
f ′(η) when N = 0.1, 0.3, 0.5. Increasing the dou-

ble diffusion parameter causes the increase in velocity
profiles in both aiding (λ = 0.05) and opposing flows
(λ = −0.05). Increasing the double diffusion param-
eter means that solutal convection is more enhanced
than thermal convection. The concentration gradient
is more enhanced than the temperature gradient. This
effect result in the increase in velocity profiles.
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Figure 4: Effect of varying Casson parameter δ on

temperature profiles

Figure 4 is plotted to examine the effects of vary-
ing the Casson parameter on temperature trends θ(η)
when δ = 1, 3, 5 for both assisting λ = 0.05 and op-
posing flow λ = −0.05. Increasing the Casson pa-
rameter result in the lowering in temperature trends.
Larger values of the Casson parameter imply high ve-
locities in the boundary layer enhancing heat transfer.
Opposing flow enhance temperature trends,similar re-
sults were reported in Ramachandra et al.[2].
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Figure 5: Effect of varying Biot number Bi on tem-

perature profiles

Figure 5 is plotted to examine the effects of vary-
ing the Biot number Bi on temperature profiles θ(η)
when Bi = 0, 0.15, 0.2. Increasing the Biot num-
ber result in the decrease in the temperature pro-
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files. Here we note that the values of the Biot num-
bers are less than 1; this is because of the uniformity
of the temperature inside the vertical surface. The
Biot number measures the heat transfer resistance in
the solid boundary. It is noted from the graph that
the heat transfer coefficient decreases with increasing
Biot number.
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Figure 6: Effects of thermal stratification parameter ε1
on temperature profiles

Figure 6 is plotted to examine the effects of ther-
mal stratification parameter ε1 on temperature trends
θ(η) when ε1 = 0.1, 0.5, 0.8. Increasing the ε1 result
in the decrease in temperature profiles. The ambient
conditions considered in this study are not constant
but varies. Increasing the thermal stratification param-
eter decrease the temperature gradient thereby reduc-
ing heat transfer. The reverse effect noted is caused
by the increase in temperature further away from the
vertical surface.
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Figure 7: Effects of solutal stratification parameter ε2
on the concentration profiles

Figure 7 depict the effect of varying solutal strat-
ification parameter ε2 on concentration trends profiles
φ(η) when ε2 = 0.1, 0.5, 0.8. Increasing the ε2 result
in the decrease in concentration profiles. The ambi-

ent solute conditions change with distance away from
the vertical plate. Increasing the solutal stratification
parameter decrease the concentration gradient thereby
reducing mass transfer. The reverse effect noted is as
a result of the increase in solute further away from the
vertical surface.
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Figure 8: Plot of the skin friction coefficient f ′′(0)
against transverse coordinate ζ for different values of

the Casson parameter δ

Figure 8 depicts the plot of skin friction coeffi-
cient f ′′(0) against the transverse coordinate ζ for dif-
ferent values of the Casson parameter δ for both aiding
and opposing thermal convection. From the graph is
noted that increasing the Casson parameter β would
cause the drop in the skin friction coefficient. The in-
crease in the Casson parameter would cause the reduc-
tion of the shear stress on the vertical surface thereby
reducing skin friction coefficient. The skin friction
coefficient increases with increasing ξ for the aiding
case (λ = 0.05) and decreases with increasing ξ for
the opposing case (λ = −0.05).
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Figure 9: Effects of varying thermal stratification pa-

rameter ε1 on heat transfer coefficient −θ′(0)

In Figure 9, the graph of the heat transfer number
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against the transverse coordinate for various values of
the thermal stratification parameter ε1 is shown. In-
creasing the thermal stratification parameter result in
the decrease in the heat transfer number. The increase
in the stratification parameter has an effect of reduc-
ing the temperature gradient thereby reducing the heat
transport from the surface of the vertical wall. The
heat transfer number values fall with increasing ζ.
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Figure 10: Effects of varying solutal stratification pa-

rameter ε2 on the mass transfer coefficient −φ′(0)

In Figure 10 depicts the plot of the mass transfer
coefficient against the transverse coordinate for dif-
ferent values of the solutal stratification parameter ε2.
Increasing the solutal stratification parameter result
in the decrease in the mass transfer coefficient. The
increase in the solutal stratification parameter would
have an effect of reducing the concentration gradient
thereby reducing the mass transfer coefficient. The
mass transfer coefficient increase with increasing ζ.
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Figure 11: Effects of varying Biot number Bi on heat

transfer coefficient −θ′(0)

In Figure 11, it noted that increasing the Biot
number result in the decrease in the heat transfer co-
efficient. Increasing the Biot number has an effect of
increasing the heat flow resistance in the solid bound-

ary thereby reducing heat transfer into the fluid.
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Figure 12: Effects of varying Biot number Bi on mass

transfer coefficient φ′(0)

In Figure 12 it is also noted that increasing the
Biot number result in the increase in mass transfer co-
efficient. The mass transfer coefficient decrease with
increasing transverse coordinate ζ.

5 Conclusion
The effect of the double dispersion in convection of
Casson fluid flow along a vertical plate have been
studied. In this study we used the bivariate local lin-
earization method (BLLM) to solve the governing sys-
tem of equations. The accuracy of the method was
compared to previous studies in the literature. The
BLLM converge linearly after five iterations and be-
comes stable up 20 iterations showing the accuracy of
this method. The results were also in excellent agree-
ment with those of the quasi-linearization method for
the case ζ = 0 as shown in Tables 1 and 2. The
new contribution of this work is the implementation
of the BLLM in solving partial differential equations
in fluid flow which yields more accurate results and is
easy to use. The new and previously reported numer-
ical computations have shown that; Increasing both
the Casson parameter δ and double diffusion parame-
ter N , increase the velocity profiles in both aiding and
opposing flow. Increasing both the Casson parame-
ter δ and Biot number Bi reduce temperature profiles.
Increasing the thermal stratification parameter ε1 de-
crease the temperature profiles, and increasing the so-
lutal stratification parameter ε2 also decreases the con-
centration profiles. Increasing the Casson parameter δ
would have an effect of increasing the skin friction co-
efficient in both aiding and opposing cases. Increasing
the thermal stratification parameter ε1 and the solutal
stratification parameter ε2 would have an effect of re-
ducing both the heat transfer coefficient −θ′(0) and
the mass transfer coefficient −φ′(0) respectively. In-
creasing the Biot number Bi would have an effect of
reducing both heat and mass transfer coefficients re-
spectively. These results concur with some of those
that are reported in the literature confirming that the
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numerical method used can be considered as an alter-
native method in solving boundary value problems.
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